Share this page:

Copy Twitter Facebook Google+ Pinterest







MUSIC algorithmIn many practical signal processing problems, the objective is to estimate from measurements a set of constant parameters upon which the received signals depend. There have been several approaches to such problems including the so-called maximum likelihood (ML) method of Capon (1969) and Burg’s maximum entropy (ME) method. Although often successful and widely used, these methods have certain fundamental limitations (especially bias and sensitivity in parameter estimates), largely because they use an incorrect model (e.g., AR rather than special ARMA) of the measurements. Pisarenko (1973) was one of the first to exploit the structure of the data model, doing so in the context of estimation of parameters of cisoids in additive noise using a covariance approach. Schmidt (1977), while working at ESL (now part of Northrop Grumman) and independently Bienvenu (1979) currently accepted high-resolution algorithms, MUSIC was the most promising and a leading candidate for further study and actual hardware implementation. However, although the performance advantages of MUSIC are substantial, they are achieved at a cost in computation (searching over parameter space) and storage (of array calibration data).